TRANSIENT MASS TRANSFER AT A PLATE AND
AT THE FRONTAL STAGNATION POINT IN A
LONGITUDINAL STREAM OF A NONLINEARLY
VISCOUS FLUID
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Results are shown of a theoretical study concerning the transient couvective mass transfer
-at a semiinfinitely large plate and in the frontal stagnation zone in a stream of a nonlineariy
pure-viscous fluid with a power-law concentration gradient at the plate surface.

In a study of the transient convective heat and mass transfer in a stream of linearly pure-viscous
fluids [1] it has been shown that at a Prandtl number Pr > 1 the processes of heat and mass transfer de-
velop in a far from quasisteady mode. We will now analyze these processes under conditions of steady
flow of an incompressible non-Newtonian fluid with a power-law rheological equation of state [3]:
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The original equations of the boundary layer are
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where V = bx! with i = 0, 1 for a plate and for the frontal stagnation point, respectively.

It is assumed here that the parameters in the rheological equation of state (1) as well as the physical
properties do not depend on the concentration. The mass transfer is considered weak, in the sense that
the concentration field of the diffusing impurity does not affect the dynamic flow characteristics. The
boundary conditions for the dynamic problem are here

u(x, 0) = o, 0) =0 u(x, @) =V. . (3)

When the concentration gradient at the body surface varies according fo a power law, then the initial
and the boundary conditions for the equation of mass transfer are

a(x, gy, 0)=cy c(x, 0, 8) =0, ¢ (x, o, ) =g, (6)

For integrating the system (4), (6) we will use the so-called similarity solutions. The velocity com-
pounents and the self-adjoint variables are [8]

u = VF' (n), 7
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We change from physical coordinates x, y, t to coordinates x, ¥, t. Then
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ax, ¥, 0) =cp ¢, 0,8 =0; ¢, (x, 00, 1) =¢,, (11}

where u = 9¥/3y; v = —~8¥/0x, and the flow function ¥ is defined by the relation
- 1

1
Y= x"" VM " F(n) for a plate, (12)
n—l1 1

Y — Ty T {m) for the frontal stagnation point, (12"
High values of the Prandtl number, characteristic of diffusion processes in liquids, allow us to use a linear
approximation for the velocity at a wall:
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where the values of ¢ = [0 (u/V)/n In=0 for various n have been taken from the monograph [8]. The quanti-
ties u, x, and ¥ for a plate are related as follows [9]:
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Analogously, for the frontal stagnation point we can obtain
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With the aid of (15), (15'), and the dimensionless quantities
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is the universal Prand{l diffusion number,
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for the frontal stagnation point, and
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we transform (10) and (11) into
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We will solve system (20)-(21) by the method first shown in [4] and developed further in [5, 7}, where
its high accuracy was an important consideration.

A Laplace transformation
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where Res > 0 and A is still an unknown positive function of w. We let gz = 1 and g(0) = g,(0) =...= 0.

Then ¢(0) = 1/s and, as will be shown later, ¢{») = 0. The unknown function A will be sought from the

solution to the steady-state problem. An introduction of this function renders the series (25) applicable at

any instant of time.

Inserting (25) into (23) and equating the coefficients in the terms of like powers in (s + A}, we find for
m=1
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818, 8.3 =8,=0.

The expression for the concentration field of the boundary layer is found from (25) by an inverse
Laplace transformation:
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every Gp, is expressed in terms of four functions
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and g, is found by integrating the recurrence relation (26) beginning with m = 1.
Function Gy, has the following properties (5, 7}:
1. For 0< 7<= and 0 < w < = it satisfies the inequality
0<G,< 1 ' (30)
2. limGp = 1.
T
At T —  expression (27) reduces to
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which yields the steady-state concentration field of the boundary layer. We are further interested in the
local diffusion current flowing to a wall.

Differentiating (27) with respect to w and then letting w = 0, we obtain
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A 3H 3 A2
) =0; g (0)=—; g0 =" —-—"—; g(0)="—";
g,(0) &0 =~ 80 = ¢ 1 2, (0) s
3H 3 117H? 225H 9 A3
0)= —h——hn g0 = —_— ————
a0 =5 7 &0 g 6E 32 16
3H 3
“(0) = yp —— S
g(0) 2E 1 (33)
585H 1125H 45 5 -,
' (0) = A — }\«__7\‘ b —— }\44;
&0 =T 128~ 64 128
3 2
(0 = 8910H° 17415H*  8I0H I 1215 n 3H ?»3——17»3...
256E3 256E2 64E 64 8E 4
are obtained by successive differentiations of (26). At T — » (32) reduces to
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For finding A (0), one must know . the solution to the steady-state problem. It is given in [8, 9]:
1 -1 .
¢y = [—3—- I‘(l/3)] ( exp (— 2% dz, (35)
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| [ T )] (36)

Equating (34) and (36), we find A (0) for the respective values of parameter n. The results of calculations
are listed in Table 1.
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TABLE 1. Values of hi/ 2(0) for Various Values of Parameter n

n

172

L 15 | e | 1| es | os Y
Plate 3,020 | 3,08 | 3,081 3,117 3,163 3,207
Stagnation

point 2439 | 2,30 | 2,345 2,990 | 2,215 2,095

It must be noted that the series on the right-hand side of (34) is semidivergent and its sum is found
with the aid of an Euler transformation [10}, inasmuch as such a transformation improves its convergence.

Exactly in a similar way, equating (31) and (35), one can find A (w) for the respective values of
parameter n. The series on the right-hand side of (81) can be either convergent or semidivergent. In the
latter case, for finding its sum, it is also necessary to apply the Euler transformation.

The behavior of the series in (32) is noteworthy. The procedure used for determining A (0) implies
clearly that the series in (34) tends toward a limit and that the ratio 'y, (m/2)/T(m/2} is always positive
but smaller than unity at any finite time 7. Consequently, every term of the series in (32) is smaller than
the corresponding term of the series in (34). Thus, the series in (32) must also have a limit. This series
can be either convergent or semidivergent. The same applies also to the series in (27), if one considers
the properties of function Gyy,.

Obviously, in (35) limcy = 0 and, since Res > 0, it follows from (25) and (31) that Hmé(w) = (}, as

W00
has been indicated earlier. With the numerical value of A (0) known, one can calculate the local diffusion
current for the respective values of, according to the relation
) 1

Nu, = —x (_0_0_) — RFrz— prl3 41
+ ay y=0
LB e e E €nl0 - Dhe(mi2) | (37)
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m==0

where Pry is the universal Prandtl diffusion number defined by relation (17), Ry = V¥ %x%/(k/p) is the uni-
versal Reynolds number, and A is defined by expressions (18)-(18')., From expressions (16), (17), and
(37) follows that within the frontal stagnation zone at n # 1, unlike in the case of a Newtonian fluid {6, 11],
the diffusion current is a function of the x coordinate. With exp (-A7), erf (7\7)‘/ 2 and Ty (m/2) repre-
sented by series in small and large A7, formula (37) reduces to
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for large A1. As was to be expected, A does not appear in (38). Initially, att <« xPr;/3 JVA(0)AY/3, the
mass transfer process evolves in accordance with the laws of molecular diffusion and is determined by the
first term of formula (38), which transforms into
R L 1/2 p.1/6 ! 12
__ pltn 1/3 7173 1 _ pln 1/3 41/3 x'° Pry _ pHn plle X X

u, = Ry Pr,” A = )1/2 =R, Pry A ———-( t—_)1/2V1/2 AUT —Rx+n g = t)l/2 i = (m‘D)I/Q . {40)
Consequently, during the initial period of time Nuy obviously does not depend on the rheological properties
of the medium. During the latter period of time, at t >» xPr 1/ 3/V?x (0A%3, the steady-state mode of mass
transfer stabilizes with
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Fig. 1 Fig. 2

Fig. 1. Transient convective mass transfer at (I) a plate and (II) in the
frontal stagnation zone: V =0.02 m/sec, x = 0.02 m, D = 0.625-107%
m?/sec, k = 1.16-1073 kg - sec™%/m, p =1.015-10° kg/m®. Dashed lines
represent the steady state.

Fig. 2. Time of complete stabilizationat (I) a plate and (II) in the frontal
zone: V = 0.02m/sec, x = 0.02m, D = 0.625-10"?m?/sec, k =1.16-1073
kg/sec™ ?/m, p = 1.015-10% kg/m3.

" Ni; : 1
- - AR 1 —1
Wfa 1 Nu, = R pris 43 [._3__ I‘(1/3)] . (41)
s
P : — The characteristic stabilization time is determined accord-
g‘f; ing to the formula
2 Nt xPrl?
3 . T = —— = 3t (42)
. VA (0) A%°
] 2 ¥ 6480 2 Y el Calculations have shown that, with the other conditions un-

Fig. 3. Transientconvective mass trans- changed, the sf.;abiliz'ation time is longer for a plate than

fer at a plate (a=1, Pr=2 108, V for the stagnation point. Thus, at

= 0.0308 m/sec): 1) x = 0.0105 m and Ry n=04 V=002mlsec; x=002 m; D=0,625.10"" m?/sec,

= 228; 2)x=0.0025 m and Ry = 54.3; 3) k=116-10 kg sec™?/m; p=1.015.10% kg/m* (43)

x =0.0065 m and Ry =14.1. the characteristic time was T = 5.869 sec for the plate and
‘ T = 2.363 sec for the frontal stagnation point. Further-

more, with other conditions unchanged, the characteristic time decreases as the fluid becomes more

pseudoplastic,

For a plate with the parameter values as specified in (43), the characteristic time according to (42)
with n = 0.8 was T = 11.36 sec and with n = 0.4 it was T = 5.869 sec.

As the fluid becomes more dilatant, the characteristic time of stabilization increases. This pecu-~
liarity has been noted earlier in a study of mass transfer at the surface of a rotating disk {12].

Results of calculations according to (37) are shown in Fig. 1 in logarithmic coordinates, for a plate
and for the frontal stagnation point, at various values of the non-Newtonian parameter n.

We will regard the stabilization to be complete at the time when the process has reached its steady
state within 5%.

In Fig. 2 is shown the time of complete stabilization as a function of the parameter n, for a plate
and for the frontal stagnation point.

It is quite evident that the process becomes steady first at the frontal stagnation point and then at
the plate.

The ratio of the local transient current to the corresponding steady-state current is

Jx . Nu, =——1—P 1/3 { exp ('—)"T) A2 orf (A2 — {1 g;n(()) I‘M—(m/Q) } 44
Jow  Niny N O T T | )
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TABLE 2, Comparison between the Local Tran- The results of calculations according to (44) for

sient Current Calculated for a Plate withn =1 a plate are shown in Table 2, with n =1 and Pr = 10,
and the Results in [5, 2] together with the data from [2, 5]. The curves over-
Nty Ny, - lap at low values of the dimensionless time param-
vi * - eter, but they separate by 1 to 6 or 7% at sufficiently
x formula (44) (8l [2 high values of this parameter. At a high Prandtl
' number one would expect less discrepancy, inasmuch
?.5 ggg 32% gi’g as the analysis in [2, 5] of the transient heat transfer
P 1,76 1,75 1,75 was based on the total true velocity profile; in our
g H; HZ Hg analysis, on the other hand, the velocity profile of
7 1,10 1,06 1,06 the diffusion boundary layer was approximated by a
? 1,05 1,025 1.0 linear one, such an approximation being permissible

at a high Prandfl number.

The theoretical data for a plate, based on (44) withn = 1 and Pr = 2.10°%, are compared in Fig. 3
with experimental data according to {11]. An initial stepwise change of the concentration gradient at the
wall and boundary conditions according to (6) were ensured during the test by electrochemical means.

NOTATION
cy is the concentration;
Cy is the concentration in the stream;
xandy are the space coordinates;
t is the time;
¥ is the flow function;

o
I
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P

are the velocity components along axes x and y, respectively;

is the velocity at the outer edge of the boundary layer;

is the diffusivity;

is the exponent characterizing the non-Newtonian behavior of a fluid;
is the consistency index;

is the self-adjoint variable;

, w, and ¢ are dimensionless variables; time, distance, and concentration, respectively;
is a quantity defined by Eqgs. (9), (9');

is a quantity defined by Eqs. (18), (18');

is a quantity defined by Eq. (19);

is the universal Prandtl diffusion number;

Ry is the universal Reynolds number;

Tij are components of the stress tensor;

R

W >

5
»

irm ) imr’ and iij are components of the strain tensor;
6j is the Kronecker delta.
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